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Bispectral measurements in turbulence 

By K. S. LII, M. ROSENBLATT AND C .  VAN ATTA 
University of California, La Jolla 

(Received 13 August 1975 and in revised form 26 April 1976) 

A bispectral analysis of high Reynolds number turbulent velocity-derivative 
data is carried out. The computations suggest that contributions of wavenumber 
triplets to the rate of vorticity production and spectral transfer are non-local in 
wavenumber space and comparable over the whole range of wavenumbers 
studied. Statistical resolvability of the bispectral estimates is obtained. An 
appendix on the asymptotic behaviour of bispectral estimates is given. 

1. Introduction 
The bispectrum has been used in a number of investigations as a tool. We 

mention in particular the work of Hasselman, Munk & MacDonald (1963) on 
ocean waves, the paper of Brillinger & Rosenblatt (1967) on sunspots, that of 
Cartwright (1968) on tides, an application of Huber et al. (1971) analysing EEG 
readings and the study of Roden & Bendiner (1973) on profiles of oceanographic 
variables. The analysis of data in these papers was helpful but did not lead to 
strong new insight. There have also been large sample theoretical investigations 
of bispectral estimates, which are described, for example, in Brillinger & Rosen- 
blatt (1967) and Rosenblatt (1971). In  this paper, the insight that accurate 
bispectral estimates in turbulence could provide in the analysis of energy transfer 
and dissipation is considered at some length. Hot-wire data obtained from an 
experiment carried out during an atmospheric measurement programme des- 
cribed by Haugen, Kaimal & Bradley (1971) is used to obtain a bispectral 
estimate with effective statistical resolution. The results are promising in that 
they give some more effective insight here than in the earlier attempts in other 
areas described above. There are also further experimental measurement 
programmes that are naturally suggested which would provide data for further 
supplementary attempts a t  bispectral estimation that would give a more com- 
plete picture. An appendix on higher-order spectra relating to their estimation 
is included. 

2. Energy dissipation and energy transfer 
As pointed out by Taylor (1938), the physical mechanism of dissipation of 

turbulent kinetic energy is associated with the stretching of vortex lines. Thus, 
in homogeneous turbulence 

E = vE(o2)t  (1) 

t The operator E denotes ‘the mean of’. 
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and the decay of kinetic energy corresponds to the production of fluctuating 
vorticity o. 

The equation for the rate of increase of E(w2}, first given by von K&rm&n 
(1937), is 

-E{02} a = E ( u ~ u ~ ~ ] - Y E ( ~ ) ~ ,  
at 

where u is the velocity. The standard summation convention is used, i.e. sum- 
mation over all values of an index if it  appears twice. The first term on the right- 
hand side of (2) describes the rate of amplification of vorticity by stretching of 
vortex lines, while the second describes the rate of viscous decay of the fluc- 
tuating vorticity. For homogeneous turbulence, the stretching term is related 
to the mean value of the principal rates of strain in the fluid (Batchelor & 
Townsend 1956; Betchov 1956) by the relation 

E(o, W, au,/ax,} = - 4E{abc>, (3) 

where a, b and c are t,he eigenvalues of the symmetric rate-of-strain tensor 
{aUf/ax, + au,/ax,}. 

If the turbulence is also isotropic, then 

where 

is the skewness factor of aulax and 

A = (Eu2/E (:j2)' 
is the Taylor microscale. From (2) a necessary requirement for a balance of 
vorticity production and destruction is that S < 0. 

For isotropic turbulence the spectral density of E(w2} is 2k2f(k), where f ( k )  
is the three-dimensional energy spectrum, so that the principal contribution to 
E(a2)  comes from larger wavenumbers. The production of vorticity is associated 
with a transfer of spectral energy from small wavenumbers to large wavenumbers 
produced by the mechanism of vortex stretching. In wavenumber space, the 
transfer is described in terms of interactions between triplets of wavenumbers 
whose wave vectors sum t o  zero. The question naturally arises as to what wave- 
number triplets are interacting most strongly to produce the dominant con- 
tributions to the spectral transfer and production of vorticity. For the present 
situation, the natural tool for investigating this question is the bispectrum of 
au/ax, i.e. B'(k,, k,). Since we shall be dealing only with the usual one-dimensional 
experimental sampling of the turbulent field, in the following our wavenumber k 
will be understood to refer only to the longitudinal wavenumber associated with 
the direction of the mean velocity. Then 

( 5 )  

( x f r  ) -  (x+r2) exp{-ik,r,-ik,r,)dr,dr, 
au 
ax 
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and 

The bispectrum B’(k,, k,) gives the contribution to the mean cube of &/ax from 
wavenumber triplets k,, k,, k, for which k, + /%, + k3 = 0. Setting r1 and r2 equal 
to zero in (6) and noting that E(au/ax)3 is real suggests that B’(k,, k2), the bi- 
spectrum of au/ax, might be real. B’(kl, k,) is related to the bispeetrum B(kl, k2) 
of u(x) by 

B’(k1, k2) = - ik, k,(k,+ k2) B(k1, k2). (7) 

Let us assume that we have a velocity field u(x, t) of homogeneous turbulence 
as in Batchelor (1953). If the Navier-Stokes equation is satisfied 

a q a t  + u . vu = - p-lvp + V V ~ U ,  (8) 

where p is the pressure, p the density and v the kinematic viscosity. Given 
incompressibility, the continuity equation becomes 

v.u = 0. (9) 

Throughout the paper, appropriate moments are assumed to exist. The homo- 
geneit,y of the field implies that one can carry out a spatial harmonic analysis 

u(x, t) = /eik-xdz(k, t), (10) 

where z(k) = z(k, 1 )  is a process of orthogonal increments in k. 

a wave vector k, is (Batchelor 1953, p. 85) 
The dynamical equation for fii(k), the spectral energy density associated with 

where 

(dz*(k) = dz( - k) since the velocity field has real components) and 

&a,B(k, k’) dk  dk’ = Im E(ka dz,(k - k )  dzB( - k) dzB(k’)} 

&(k,k’) = c Qa,/9(k9k). 

(12) 

a, B 

&(k, k‘) can be interpreted as the mean rate of transfer of energy from d k  to dk. 
The continuity equation implies that 

&(k, k )  + &(k’, k) = 0. 

As shown by Yeh & Van Atta (1973, equation 12), 

&(k, k’) = - mm,?z,?Jk,  - k‘)l, (13) 

where Bl,n,n(k7 k )  is the three-dimensional bispectrum of the velocity field and 
1 and n denote the direction of the velocity component chosen at each of the 
three points (see Yeh & Van Atta 1973, equation 8). Our one-dimensional 
bispectrum for the u component, B(k,, k;), is given in terms of one component 
of Bl,n,m(k7 k‘) by the relation 

B(kl, k;) = JJB,,,,,(k, k‘) dku dkldkAdki. 
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Here k, and kB refer to the k, and k3 axes in k space, while, following the conven- 
tion adopted here, k1 and k; are two wavenumbers associated with the k, axis 
in k space. The measured bispectrum of u or aulak gives information about only 
one of the nine bispectral terms in &(k, k’). 

An equation similar to (12) with one-dimensional wavenumbers instead of 
wave vectors as variables can also be derived. Let 

gii(k1) = //fii(kl, kz, k3) dkzdk,, 

h2(kl) = /I kKf,i(kl, k,, k3) dkzdk37 

h 3 ( k l )  = 11 gfii(kl, ‘2, k 3 )  d k 2  dk3 

(14a)  

( 1 4 b )  

(14c) 

(15) and 

with q(k,,k;) S qa,j(k,,k;). 

qx,p(k1,  k;) = // Qa,B(kl$ kz, k37 k;, k;, kA)dkzdlc,dk;dkicj, 

a,  B 
One can show that 

where 

Re B’(k1, k;) = w, + k;) Q1, ,(k,, 

k = (k,, k,, k3) and k’ = (k;,  kk, k;). Then 

[ h i ( W I  = J d k i ,  k;) dk; - vk?gii(kJ - ~%(k,)  - vh3(k1) .  (16) 
a 

In  (12) one of the terms is 

Im {k, E{dz,(k - k’) dz,( - k) dx,(k‘)}}. 

Let us  integrate this over k,, k3, k; and ki .  The resulting expression exceptfor the 
factor k, is proportional to the imaginary part of the one-dimensional velocity 
bispectrum. We have estimated the velocity-derivative bispectrum, which is 
related to the velocity bispectrum by (7). Looking at the velocity derivative 
acts as a sort of prewhitening, damps out the very low frequency bispectral mass 
and prevents i t  from leaking and masking the bispectral mass away from zero. 
This one-dimensional velocity bispectrum is one of the various terms appearing 
in ~(k,, k;). It would be of considerable interest to estimate some of the other 
terms and see whether they agree with the symmetries one would anticipate 
in the case of isotropy. 

The assumption underlying the Kolmogorov wavenumber-cascade idea of 
spectral energy transfer is that most of the important interactions are local in 
wavenumber space. In  his (1 959) paper, Kraichnan considers a model in which 
spectral energy transport throughout the inertial and dissipation ranges is found 
to proceed by a cascade process essentially local in wavenumber space. In  a 
later paper (1971) Kraichnan comments that in three dimensions the transfer 
is already not very local, and this is strongly suggested by the analysis of experi- 
mental data we have carried out. If the dominant interactions were very localized 
one would expect to find a rather peaked bispectrum along a diagonal and we find 
(see 8 5 and tables 1 , 3  and 5 )  that this is not the case. Notice that symmetries 
imply that B(k,, k;) = B(k;,k,) = B(kl, - k , - k ; ) .  
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3. Data acquisition and processing 
The data were obtained from a modest hot-wire experiment carried out during 

the atmospheric-surface-layer measurement programme described by Haugen et 
al. (1971). The basic data for the streamwise velocity derivative used in the 
present measurements were part of the data used in previous studies by Van 
Atta & Yeh (1973, 1975) and by Wyngaard & Pao (1972). A single vertically 
oriented hot wire 5pm in diameter and 1.2 mm long was operated in the linearized 
constant-temperature mode (DISA 55D05-15 unit) at  a height of z = 5-66m. 
The mean velocity U was 3.78 m/s and the Komogorov microscale 7 was 0.08 em. 
The streamwise velocity derivative aufat was obtained from a four-pole Butter- 
worth filter (Wyngaard & Lumley 1967), which differentiated and low-pass 
filtered (24 dB per octave) the u signal from the anemometer to eliminate high 
frequency noise. This signal was then recorded on analog magnetic tape. The 
previous studies which used the same basic data provide further details of the 
data acquisition and estimates of the accuracy of the data. The analog data 
were played back in the laboratory of the Department of Applied Mechanics and 
Engineering Sciences, UCSD, sampled with a 12-bit analog-to-digital converter 
a t  a sample rate of 4172 samples per second, and written on digital magnetic 
tape. The skewness factor X of the derivative aufat is - 0.85438. 

4. Computation 
The computation was done by using a CDC 7600 digital computer in Lawrence 

Berkeley Laboratory at Berkeley through a terminal in the Institute of Geo- 
physics and Planetary Physics at La Jolla. The digital tape consisted of 700 
records, each record containing 8 192 values of &/at in approximately 2 s of real 
time. There is a small gap between each record. The procedures used to compute 
the bispectrum were as follows. 

(1) To reduce the effect of aliasing, the data were pre-filtered by averaging 
every eight readings. The resulting 1024 readings in each record are denoted by 

(2) Each record was fast Fourier transformed and the mean of each record 
x2, ., x1024. 

was removed, i.e. we computed 

n 

j=l 
P(h) = exp (ijih27rfa) xi, h = 0, 1, . .., n - 1, n = 1024, 

and set P(0) = 0. Note that by symmetry we only need to compute P(A) for 
= 0, 1 ,2  ,..., 512. 

(3) The bispectrum estimate 

b(A,, A,) = (2n)-2n-1F(A,) F(h2) P( - A ,  - h2), A,, A, = 0,1, . . ., 330, 

was computed for each record. Note that we did not compute this for the full 
range of (Al, A,) owing to the limitation of the memory of the CDC 7600, the 
primary interest in the inertial range and the cost of computation. The largest 
array we could use had 131071 words. 
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Frequency 0 

0 - 1-82 x 103 

2 - 3.74 x 103 

4 - 2.39 x 103 

6 - 1.97 x 103 

8 - 2.04 x 103 

(2.50 x lo2) 

(4.67 x 10') 

(3.82 x lo2) 

(4.46 x 10') 

(4.62 x lo2) 

2 

- 3.74 x 103 

- 3.26 x 103 

- 3.41 x 103 

- 2.19 x 103 
(4.97 x 102) 

- 3.19 x 103 

(4.67 x lo2) 

(6.48 x 10') 

(5.05 x lo2) 

(5.09 x 10') 

4 

- 2.39 x 103 

- 3.41 x 103 

- 3.31 x 103 

-2.67 x 103 

-2.11 x 103 

(3.82 x lo2) 

(5.05 x lo2) 

(7.05 x lo2) 

(4.70 x 10') 

(4.46 x lo2) 

6 
- 1.97 x 103 

- 2.19 x 103 
(4.97 x 102) 

- 2.67 x 103 

- 3.00 x 103 

- 1.99 x 103 

(4.46 x 10') 

(4.70 x lo2) 

(6.12 x 10') 

(5.02 x lo2) 

8 

- 2.04 x 103 
(4-62 x loa) 

(5.09 x lo2) 

(4.46 x lo8) 

(5.02 x lo*) 

- 3.19 x 10' 

- 2.11 x 103 

- 1.99 x 103 

- 1.89 x 103 
(5.43 x 102) 

TABLE 3. Estimated real part of bispectrum of velocity derivative (record 101-700). 
Estimated standard deviation in parentheses. One unit in frequency is 15.276 Hz. 

Frequency 0 

0 - 1.62 x 10' 
(1.26 x lo2) 

2 3-19 x 10' 
(1.19 x 10') 

4 - 2.90 x 10' 
(1.31 x lo2) 

6 8.73 
(1.33 x 10') 

8 - 1.75 x 10' 
(1.09 x 102) 

2 

3.19 x 10' 
(1.19x 102) 

7.92 x lo2 
(6.21 x lo2) 

- 1.38 x lo1 
(4.77 x 102) 

3.67 x 10' 
(4.40 x lo2) 
4.39 x 102 

(4.02 x lo2) 

4 

- 2.90 x 10' 
(1.31 x lo2) 

- 1.38 x 10' 
(4.77 x 102) 

3,27 x lo2 
(7.40 x lo2) 
- 2.27 x lo2 

(5.02 x lo2) 

(3.68 x lo2) 
- 4.48 x 10' 

6 
8.73 

(1.33 x lo2) 

3.67 x 10' 
(4.40 x lo2) 

(5.02 x lo2) 
5.67 x loa 

(6.89 x 10') 

- 2.27 x 10' 

- 5.87 x lo2 
(4.42 x lo2) 

8 

- 1.75 x 10' 
(1.09 x 10') 

4.39 x 102 
(4.02 x 10') 

-4.48 x 10' 
(3.68 x 10') 

- 5.87 x 10' 
(4.42 x 10') 

3.67 x 10' 
(6.14 x 10') 

TABLE 4. Estimated imaginary part of bispectrum of velocity derivative (record 101-700). 
Estimated standard deviation in parentheses. One unit in frequency is 15.276 Hz. 

(4) To reduce the variance, we averaged, a t  each (Al,A2), within a square 
neighbourhood 31 x 31, i.e. for the kth record, 

(5) To reduce the variance further, we averaged I00 records to get our estimates 

We also computed the variance of this estimate at  a few selected points. The 

(i) Repeat steps 1-4 in the computation of the bispectrum estimate for each 

procedures were as follows. 

kth record to get 6(hl, h2). 
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Frequency 0 2 4 6 8 

0 - 0.89 -0.91 - 0.49 - 0.44 - 0.54 
2 -0.91 -0.51 - 0.52 - 0.38 - 0.67 
4 - 0.49 - 0.52 - 0.51 - 0.48 - 0.47 
6 - 0.44 - 0.38 - 0.48 - 0.63 - 0.56 
8 - 0.54 - 0.67 - 0.47 - 0.56 - 0.71 

TABLE 5. Normalized estimated real part of bispectrum of velocity 
derivative (record 101-700). One unit in frequency is 15.276 Hz. 

(ii) Compute 
1 400 

lo0k=301 
Var (A,, A,) = - [Re 6,(A,, A,) -Re El(&, A,)], 

and the corresponding variance for the imaginary part. 

(iii) Compute SD(A,, A,) = [&var(A,, A,)]+ for both real and imaginary parts. 
This gave us the standard deviation of our estimates. 
The appendix gives results determining the large-sample behaviour of esti- 

mates. From the theorem in the appendix, it  is clear that to &st order the 
variance of the third-order periodogram is proportional to the sample size. 
Consistent with the low wavenumber range over which one wishes to estimate, 
it is clear that one does not want to process too much data in computing fast 
Pourier transforms. Otherwise, to reduce the variance we should have to smooth 
the periodogram (third order) extensively and this would be inconvenient since 
there is great expense involved in moving information in and out of the large 
core memory of the computer. Further, one would increase bias. For these 
reasons it seemed best to follow the computational procedure indicated in steps 
1-5. 

It should be noted that the standard deviation of the final estimate of the 
bispectra based on the asymptotic results of the appendix is of the same order of 
magnitude as the standard deviation estimated from the data. The computations 
in tables 1-4 should be thought of on a relative rather than an absolute scale. 
One unit in frequency in these tables is 15.276Hz. In  table 5 the normalized 
estimated real part of the bispectrum has been computed, i.e. 

Re w,, A,)/{f(~l)f(~,)f(~l+ A,))+' 

Of course, estimates of Re b(A,, A,) and of the spectral density f are inserted. An 
additional multiplicative factor of 8, = 64 is put in since the bispectrum com- 
puted has been derived by initially averaging data over disjoint blocks of 8 
successive readings. This averaging of data has introduced also a multiplicative 
factor for the bispectrum due to the filtering which has the form 

1 sin 401, sin 4a, sin 4(a, + a,), 
83 sin &a, sin +a, sin $(a, + cc,)~' 

where a1 = Ain/2086, i = 1, 2,  and the hi are in Hz. Table 6 gives this factor 
for the range of pairs of frequencies of interest. The numbers obtained in tables 
1-4 should be divided by the appropriate factor in this table. 

--- 
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I I I 1 I I l l 1 1  1 1 I I I . l I I (  1 1 1 I 1 1 1 l .  

100 101 102 103 

Frequency (Hz) 

FIGURE 1. Estimated spectral density (record 301-400) of 
the velocity derivative : log-log plot 

5. Results of the computation 
A log-log plot of the estimated spectral density of the velocity derivative is 

given in figure 1. Notice that dealing with the derivative has effectively whitened 
(approximately) the spectral density over the inertial range, roughly from 1 
to IOOHz. The estimated density varies between 2 x lo3 and 8 x lo3 for fre- 
quencies from I to 150Hz. In  table 1 the estimated real part of the bispectrum 
of the velocity derivative is given together with estimates of the standard 
deviation locally. The bispectrum is negative for all values of A, and A, computed 
(between 1 and 150 Hz). It is largest in magnitude for A, and A, small, particularly 
about the diagonal, and decreases slowly in magnitude as A, and A, increase. 
The estimated standard deviation ranges from one-third to one-fifth of the 
magnitude of the bispectrum when A, and A, are between 1 and 90 Hz. This and 
the relatively smooth variation of the real part of the bispectrum indicate that 
we are getting reasonable statistical resolution of the estimate. Notice, on the 
other hand, that in table 2 the estimated imaginary part of the bispectrum 
oscillates from positive to negative values consistent with the bandwidth of the 
smoothing weights two-dimensionally. The magnitude of the estimated imaginary 
part of the bispectrum is less than that of the real part, often about a tenth the 
size. Further, the estimated standard deviation locally is about the same size 
as the imaginary part itself. This suggests that the imaginary part is probably 
zero over most of the range. For homogeneous (locally) isotropic turbulence i t  



56 K .  X. Lii, ill. Rosenblatt and C. Van Atta 

7 0 1 I 3 4  5 6 7 8 9  



Bispectral measurements in turbulence 57 

FIQTJRE 3. Perspective view of figure 2 (a). 

would be zero. Notice that the real part of the bispectrum determines one of the 
nine terms that specify q(k,, k;) in (12), namely 

k, E{dz(k, - k;) dz( - k,) dz(k;)). 

We actually estimate b(w,, w;), where w, = k, - ki > 0 and w; = k; > 0, and 
this corresponds to a transfer of energy (or vorticity) from k; = w; to 

k, = w,+w; > k;. 

It clearly would be of interest to have an experiment set-up, for example in a 
wind tunnel, where the other eight types of term could be measured. 

The computations suggest that contributions of wavenumber triplets to 
spectral transfer and the rate of vorticity production are non-local in wave- 
number and comparable over the whole range of wavenumbers studied. Physic- 
ally this would indicate that on the average vortices of broadly different scales 
interact appreciably. 

Strictly, the bispectrum at (&,A,) with either A, or A, = 0 should be zero. 
However, we are actually estimating the average bispectrum over squares with 
a linear bandwidth of 7.638 Hz. It should be noted that there may be some effect 
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of aliasing at 100-15OHz. The estimates in table 3 are a bit different from those 
in table 1 and can be attributed to some non-stationarity over the longer time 
range of records 101-700. 

We thank John Wyngaard for the loan of the analog tape W-9. We are indebted 
to colleagues who read the manuscript and made helpful comments. This research 
was supported by the Office of Naval Research and the National Science 
Foundation. 

Appendix. Bispectra and higher-order spectra 
This appendix is concerned with a set of theoretical (statistical) results on the 

asymptotic behaviour of bispectral estimates. In  our computations we were 
guided by these results in our averaging (in time) and smoothing (in frequency) 
so as to reduce the variance of the estimates. I n  fact, it is clear that without 
these theoretical results as a guide we should have obtained no resolvability in 
our estimates. 

It will be convenient at this point to consider X ( t ) ,  t = ..., - 1, 0, 1, ..., a 
discrete-time-parameter stationary process all of whose moments exist. Then, 
assuming E X ( t )  = 0 and X ( t )  to be real valued, 

X ( t )  = jIn eith dz (h )  

where 
dz (h )  = dz( -A) ,  dz(')(A) = 2 Re &(A), dA2)(h) = - 2 Im dz(h) .  

Notice that, if the cumulant 

44, t2, * * . Y  t,) = cum (X(t l ) ,  ***, X(t,)), 

then c(tl, t,, . . . , t,) depends only on t, - t,, . . ., t, - tl because of the stationarity of 
the process X ( t ) .  The cumulant c(tl, t,, ..., t,) is a kth-order polynomial in 
moments of order no higher than k. Conversely the kth-order moment E{X(t,). . . 
X(t,)} is a kth-order polynomial in cumulants of order no higher than k. We 
msume summability of c as a function of k - 1 of its arguments. 

This summability is a sort of mixing condition for the random process X(t ) .  
It implies an approach to independence of groups of random variables separated 
by greater time gaps. This implies that kth-order cumulant spectral densities 

k- 1 
k f ( h 1 ,  A,, . - -, h k )  = (2n)-k+' z c(0, vl, w2, . . . , z ) , ~  exp (- i w, A,) 

v,, ..., %-I 

exist, where it is understood that 

k 

j = 1  
A, = 0 modulo2n 
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Notice that the second- and third-order spectral densities can be written in terms 
of moments rather than cumulants. Now 

- 
Edz(h)dz(p)  = J(h-p) f (h)dh,  -7r < A, p < 7r, 

Edz(j)(A) dz(k'(p) = J(h - p )  Jj,J2f(A) dh,  

Edz(h1) dz(h,). . .dz(A,) = V(h, + A, + . . . + hk) kf(hl,  A,, . .., hk) dh,. . .dh,, 

where f ( A )  = 2 f ( A ,  -A ) .  Further 

where V(h) =!E 6(A+2jT). 
i 

Because X ( t )  is real valued 

and so 

where c and q are the real and imaginary parts off. 

kf(h1, ... = kf(-hl ,  ..., - h k f  

c(A,, . . . , hk) = c( -A,, . . ., - Ak), q(A1 . . ., Ak) = - q( - A,, . . ., - hk), 

N-1 

t = O  
Let $,(A) = C X(t)eitA 

be the Fourier transform of the finite section { X ( t )  10 < t < N } .  Estimates of the 
kth-order spectra are often constructed in terms of the following kth-order 
analogue of the second-order periodogram : 

k 

i=1 
P ( A , ,  . . . , hk) = (27r)-k+"-l n d(W(Aj),  

k 
where E Aj = 0 (mod 277). 

i=l 

For this reason, it is of some interest to get a good approximation for the variance 
(and covariances) of these statistics. The following result is helpful in obtaining 
such approximations. 

Let X ( t )  be a strictly stationary sequence with continuously differentiable spectral 
density. Then 
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and by using an approximation like that in Rosenblatt (1974, p. 174) leading to 

Notice that-d,(h) is a discrete time-truncated Fourier transform of the data 
X( t ) ,  t = 0,'. . .LN - 1. The result implies that the random variables 

N-4 Red&), N-* Im &(A,), A, = 2nj/N, j = 1, . . . , N - 1, 

for large N approximately have variance nf(A,), and are asymptotically un- 
correlated. In  fact, underiappropriate conditions one can show these random 
variables are for large N approximately jointly Gaussian. 

The periodogram 
(27rN)-1[dN(h,)p = &(Aj) 

W N ( h , )  = f(hj) 
is a poor estimate off(h,). Its mean 

is approximately f(A,) but its variance 

var (&(A,)) zff2(hj) ,  j = 1, ..., N ,  

does not tend to zero as N+co. If one has M disjoint blocks of N successive 
observations, a periodogram F$(A,), s = 1, ..., M ,  can be estimated from each 
block. By taking the average of these periodograms 

one gets an estimate fa)(&) with the same approximate mean f(hj) and reduced 
variance nM-lf2(h,), approximately. This is an average over time sections; The 
variance can be reduced further by spatial averaging over wavenumbers. Thus a 
second estimate 

1 s+r 

2r + 1 u=s--r 
f'2'(hr) = - c f ( l V U )  

has approximate variance 

However, this averaging over wavenumbers must not be made too broad for 
then the mean of the estimate would no longer be approximatelyf(A,) (the bias 
of the estimate would become large). 

A detailed argument for the computation of the variance and covariance will 
be carried out for the bispectral (third-order) periodogram. A corresponding 
analysis can be carried out for a kth-order periodogram with k > 3. First notice 
that 

Re { ~ N ( 4  4dp) d N (  - -P)> = Re d N ( 4  Re d d p )  Re dN(h +PI 
+RedN(A) Im d,(p) Im +p) 
-k Im d N ( h )  Red,&) Im d N ( h  +p)  
- Im &,(A) Im dN(p)  Re dN(h  +p) 
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and 
Im{d~(A)d~(lu) d ~ ( - h - p ) )  = Imd~(A)Imdi&)Imd~(A f l U )  

-RedN(A)RedN(p) ImdN(A+p)  
+RedN(h)ImdN(p) RedN@ +P) 
+ImdN(h)RedN(lU)RedN(h+lU). 

One can obtain the following result. Let X ( t )  be a strictly stationary process with 
kth cumulant functions up  to sixth order all sumrnable as functions of k - 1 variables. 
LePs,, s,, 1, and I ,  be integers with 0 < s, < s2 and 0 < I, < I,. Then 

Re (- 1 dN r$) dN (2) d N  ( - 2n'y 12))]) 
(2n),N 

while 

A more detailed discussion of some related questions can be found in Brillinger 
& Rosenblatt (1967) and Lumley & Takeuchi (1976). 

One can use 
(2n)-z N-f dN(Al) dN(A2) d N (  - A,- A,) = I L V ( ~ ~ ,  

as an analogue of the periodogram with respect to estimation of the bispectral 
density. It has the right approximate mean 

E I N ( A l i  A2) b(A1, 

but its variance properties are much worse than those of the periodogram since 

var (Re IN(&,  A,)), var (Im  IN(^, 4)) (N/4n) f (Al ) f (Az) f (A1 + 4th 
so that the variance is proportional to the sample size. We were particularly 
interested in the inertial range (low wavenumbers) in our analysis and so it was 
because of this proportionality of the variance to sample size that the data was 
low-bandpass atered by averaging every eight readings (see 3 4). To reduce the 
variance of an estimate we have to average bispectral periodograms from disjoint 
time blocks (say M blocks) and then smooth spatially (over wavenumbers) to 
reduce the variance. This reduction of the variance by averaging Re IN(A,, A,) 
and Im IA7(h,, A,) over 

A, = Sns,/N, A, = 2ns,/N, 
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sl, s2 = I, 2, . . ., N - 1, follows from the asymptotically uncorrelated behaviour of 
the bispectral analogue of the periodogram of these points. Notice that an initial 
spectral estimate is essential in trying to gauge the magnitude of the variance of 
these estimates of the bispectrum. 
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